Multi-View Surgical Camera Calibration with None-Feature-Rich Video Frames: Toward 3D Surgery Playback

Author:

Obayashi Mizuki1,Mori Shohei12ORCID,Saito Hideo1ORCID,Kajita Hiroki3ORCID,Takatsume Yoshifumi3ORCID

Affiliation:

1. Graduate School of Science and Technology, Keio University, Yokohama 223-8852, Japan

2. Institute of Computer Graphics and Vision, Graz University of Technology, 8010 Graz, Austria

3. Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan

Abstract

Mounting multi-view cameras within a surgical light is a practical choice since some cameras are expected to observe surgery with few occlusions. Such multi-view videos must be reassembled for easy reference. A typical way is to reconstruct the surgery in 3D. However, the geometrical relationship among cameras is changed because each camera independently moves every time the lighting is reconfigured (i.e., every time surgeons touch the surgical light). Moreover, feature matching between surgical images is potentially challenging because of missing rich features. To address the challenge, we propose a feature-matching strategy that enables robust calibration of the multi-view camera system by collecting a set of a small number of matches over time while the cameras stay stationary. Our approach would enable conversion from multi-view videos to a 3D video. However, surgical videos are long and, thus, the cost of the conversion rapidly grows. Therefore, we implement a video player where only selected frames are converted to minimize time and data until playbacks. We demonstrate that sufficient calibration quality with real surgical videos can lead to a promising 3D mesh and a recently emerged 3D multi-layer representation. We reviewed comments from surgeons to discuss the differences between those 3D representations on an autostereoscopic display with respect to medical usage.

Funder

MHLW Health, Labour, and Welfare Sciences Research Grants Research on Medical ICT and Artificial Intelligence Program

MIC/SCOPE

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. OS-NeRF: Generalizable Novel View Synthesis for Occluded Open-Surgical Scenes;2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW);2024-03-16

2. High-Quality Virtual Single-Viewpoint Surgical Video: Geometric Autocalibration of Multiple Cameras in Surgical Lights;Lecture Notes in Computer Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3