Optical Breakdown on Clusters of Gas Nanobubbles in Water; Possible Applications in Laser Ophthalmology

Author:

Babenko Vladimir A.1,Sychev Andrey A.1,Bunkin Nikolai F.2ORCID

Affiliation:

1. P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninskiy Prospekt, 53, 119991 Moscow, Russia

2. Department of Fundamental Sciences, Bauman Moscow State Technical University, ul. Baumanskaya 2-ya, 5/1, 105005 Moscow, Russia

Abstract

Here we studied the regimes of optical breakdown in water, stimulated by nanosecond and picosecond laser pulses at a wavelength of 1064 nm. A distinctive feature of our theoretical model, confirmed in experiment, is that in our case the optical breakdown develops on heterogeneous centers-clusters of gas nanobubbles. To the best of our knowledge, this is the first study of the role of clusters of gas nanobubbles in the optical breakdown of liquids that are transparent to pump radiation. In the experiment described in this paper, it was found that when initially degassed water is saturated with dissolved air, the breakdown threshold decreases. A theoretical model describing this phenomenon is suggested. This model includes the development of an electron avalanche inside individual nanobubbles, followed by the stimulated optical coalescence of a nanobubble cluster. According to our estimates, this regime occurs at laser radiation intensities of about 106–107 W/cm2. It is important that at such low intensities the breakdown flash (the basic endpoint of optical breakdown) does not appear due to the deficit of input laser energy. We provide an experimental proof of the coalescence regime, stimulated by a laser pulse in nanosecond range. The experimental threshold of stimulated coalescence is in good agreement with the theoretical estimates. Since the stimulated optical coalescence mode occurs at very low laser intensities, its excitation does not result in mechanical side effects in eye tissues, i.e., a shock wave should not be excited. Note that shock wave always occurs during optical breakdown, which is traditionally excited at intensities of 1012 W/cm2. In our experiment, the generation of a shock wave at such pump intensities was also observed. Since, according to the estimates given in the article, the volume number density of nanobubble clusters in the intraocular fluid can reach 108 cm−3, the excitation of the stimulated optical coalescence mode of nanobubble clusters can be used in ophthalmic surgery, such as laser iridotomy.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3