Optimising a Biogas and Photovoltaic Hybrid System for Sustainable Power Supply in Rural Areas

Author:

Roldán-Porta Carlos1ORCID,Roldán-Blay Carlos1ORCID,Dasí-Crespo Daniel1ORCID,Escrivá-Escrivá Guillermo1ORCID

Affiliation:

1. Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain

Abstract

This paper proposes a method for evaluating the optimal configuration of a hybrid system (biomass power plant and photovoltaic plant), which is connected to the electrical grid, to achieve minimum energy costs. The study is applied to a small rural municipality in the Valencian Community, Spain, as an energy community. The approach takes into account the daily energy demand variation and price curves for energy that are either imported or exported to the grid. The optimal configuration is determined by the highest internal rate of return (IRR) over a 12-year period while providing a 20% discount in electricity prices for the energy community. The approach is extrapolated to an annual period using the statistical data of sunny and cloudy days, considering 23.8% of the year as cloudy. The methodology provides a general procedure for hybridising both plants and the grid to meet the energy needs of a small rural population. In the analysed case, an optimal combination of 140 kW of rated power from the biogas generator was found, which is lower than the maximum demand of 366 kW and 80 kW installed power in the photovoltaic plant, resulting in an IRR of 6.13% over 12 years. Sensitivity studies for data variations are also provided.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3