A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique

Author:

Ali Amal Al1,Khedr Ahmed M.2ORCID,El-Bannany Magdi34,Kanakkayil Sakeena2

Affiliation:

1. Department of Information Systems, University of Sharjah, Sharjah 27272, United Arab Emirates

2. Department of Computer Science, University of Sharjah, Sharjah 27272, United Arab Emirates

3. College of Business Administration, Umm Al Quwain University, Umm Al Quwain 536, United Arab Emirates

4. Department of Accounting and Auditing, Faculty of Business, Ain Shams University, Cairo 11566, Egypt

Abstract

This study aims to develop a better Financial Statement Fraud (FSF) detection model by utilizing data from publicly available financial statements of firms in the MENA region. We develop an FSF model using a powerful ensemble technique, the XGBoost (eXtreme Gradient Boosting) algorithm, that helps to identify fraud in a set of sample companies drawn from the Middle East and North Africa (MENA) region. The issue of class imbalance in the dataset is addressed by applying the Synthetic Minority Oversampling Technique (SMOTE) algorithm. We use different Machine Learning techniques in Python to predict FSF, and our empirical findings show that the XGBoost algorithm outperformed the other algorithms in this study, namely, Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), AdaBoost, and Random Forest (RF). We then optimize the XGBoost algorithm to obtain the best result, with a final accuracy of 96.05% in the detection of FSF.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference78 articles.

1. A robust deep learning model for financial distress prediction;Sreedharan;Int. J. Adv. Comput. Sci. Appl.,2020

2. Internal control and compliance-control as effective methods of management, detection and prevention of financial statement fraud;Kulikova;Acad. Strateg. Manag. J.,2016

3. TAB-SAPP: A trust-aware blockchain-based seamless authentication for massive IoT-enabled industrial applications;Deebak;IEEE Trans. Ind. Inform.,2022

4. A Multi-Layer Perceptron Approach to Financial Distress Prediction with Genetic Algorithm;Sreedharan;Autom. Control. Comput. Sci.,2020

5. Kumar, R., and Tripathi, R. (2020). Blockchain Cybersecurity, Trust and Privacy, Springer.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3