Perceiving Conflict of Interest Experts Recommendation System Based on a Machine Learning Approach

Author:

Im Yunjeong1ORCID,Song Gyuwon1ORCID,Cho Minsang1ORCID

Affiliation:

1. Data Science Laboratory, Advanced Institute of Convergence Technology (AICT), 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si 16229, Gyeonggi-do, Republic of Korea

Abstract

Academic societies and funding bodies that conduct peer reviews need to select the best reviewers in each field to ensure publication quality. Conventional approaches for reviewer selection focus on evaluating expertise based on research relevance by subject or discipline. An improved perceiving conflict of interest (CoI) reviewer recommendation process that combines the five expertise indices and graph analysis techniques is proposed in this paper. This approach collects metadata from the academic database and extracts candidates based on research field similarities utilizing text mining; then, the candidate scores are calculated and ranked through a professionalism index-based analysis. The highly connected subgraphs (HCS) algorithm is used to cluster similar researchers based on their association or intimacy in the researcher network. The proposed method is evaluated using root mean square error (RMSE) indicators for matching the field of publication and research fields of the recommended experts using keywords of papers published in Korean journals over the past five years. The results show that the system configures a group of Top-K reviewers with an RMSE 0.76. The proposed method can be applied to the academic society and national research management system to realize fair and efficient screening and management.

Funder

Korean government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rumor gatekeepers: Unsupervised ranking of Arabic twitter authorities for information verification;Journal of King Saud University - Computer and Information Sciences;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3