Experimental Analysis and Simulation of a Porous Absorbing Layer for Noise Barriers

Author:

Sousa Laura1ORCID,Pereira Luís1ORCID,Montes-González David2ORCID,Ramos Denilson1,Amado-Mendes Paulo1ORCID,Barrigón-Morillas Juan Miguel2ORCID,Godinho Luís1ORCID

Affiliation:

1. Universidade de Coimbra, ISISE, ARISE, Departamento de Engenharia Civil, Rua Luis Reis dos Santos, 3030-788 Coimbra, Portugal

2. Universidad de Extremadura, INTERRA, Departamento de Física Aplicada, Laboratorio de Acústica (Lambda), Avda. de la Universidad, s/n, 10003 Cáceres, Spain

Abstract

Noise barriers are common noise mitigation measures usually implemented near roads or railways, with proven efficiency. This work presents a study of a porous concrete material incorporating expanded clay as aggregate, to be used on the sound-absorption layer of noise barriers. A theoretical material model is calibrated using experimental data and then used to estimate the diffuse field sound absorption from the normal incidence sound absorption estimation/measurement. Validation of such estimation is performed by comparing to reverberant room measurements. Numerical simulations are carried out using the boundary element method (BEM) and the CNOSSOS-EU calculation method to assess the performance of different types of barriers incorporating this material. L-shaped and vertical barriers are tested, as well as low-height and conventional (taller) barriers, employed in the context of a railway noise scenario. Different results are obtained by the two methods, mainly due to the different underlying physical principles. Good insertion loss values may be obtained using both conventional and low-height noise barriers together with the porous concrete material if a careful choice of its location within the barrier is made.

Funder

FCT—Fundação para a Ciência e a Tecnologia, I.P.

Institute for Sustainability and Innovation in Structural Engineering—ISISE

Associate Laboratory Advanced Production and Intelligent Systems ARISE

FEDER funds

national funds

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. World Health Organization (WHO) (2022, September 01). Health Topics. Environment and Health. Noise, WHO Regional Office for Europe, Copenhagen (Denmark). Available online: https://www.euro.who.int/en/health-topics/environment-and-health/noise/noise.

2. Recent advances in nonlinear passive vibration isolators;Ibrahim;J. Sound Vib.,2008

3. Acoustic performance of a semi-closed noise barrier installed on a high-speed railway bridge: Measurement and analysis considering actual service conditions;Zhang;Measurement,2019

4. Liu, J., Guo, H., and Wang, T. (2020). A review of acoustic metamaterials and phononic crystals. Crystals, 10.

5. Kephalopoulos, S., Paviotti, M., and Anfosso-Lédée, F. (2012). Common Noise Assessment Methods in Europe (CNOSSOS-EU), EUR 25379 EN, Publications Office of the European Union. Available online: https://data.europa.eu/doi/10.2788/32029.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3