The Synergistic Effect of Simultaneous Ultrasound Heating and Disintegration on the Technological Efficiency and Energetic Balance of Anaerobic Digestion of High-Load Slaughter Poultry Sewage

Author:

Kazimierowicz Joanna1ORCID,Dębowski Marcin2ORCID,Zieliński Marcin2ORCID

Affiliation:

1. Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Białystok, Poland

2. Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland

Abstract

Regulations in force urge for thermal pre-treatment of post-slaughter waste prior to its anaerobic digestion. Increased interest in biomethane as a fuel in gas networks or vehicles of road transport forces the need to look for heating methods that are alternative to heat recovery from cogeneration. The goal of this study was to determine the synergistic effect of simultaneous ultrasound heating and disintegration on the technological efficiency and energetic balance of the anaerobic digestion of high-load slaughter poultry wastewater. The highest efficiency of anaerobic digestion was obtained for the ultrasound thermal pre-treatment (60 min, 90 °C, OLR = 2.0 gCOD/dm3). In this experimental variant, the biogas production rate reached 9.0 ± 0.2 cm3/gCOD·h, biogas yield was 492 ± 10 cm3/gCOD, and the biogas produced contained 69.8 ± 1.4% CH4. Given the incurred energy outputs, the highest net energetic efficiencies, i.e., 5.92 ± 0.43 Wh and 5.80 ± 0.42 Wh, were obtained in the variants with the conventional thermal pre-treatment (60 min, 70 °C, OLR = 6.0 gCOD/dm3) and ultrasound thermal pre-treatment (60 min, 70 °C, OLR = 6.0 gCOD/dm3), respectively.

Funder

Minister of Education and Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3