Visual Exploration of Cycling Semantics with GPS Trajectory Data

Author:

Gao Xuansu1,Liao Chengwu1,Chen Chao1,Li Ruiyuan1

Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 400044, China

Abstract

Cycling—as a sustainable and convenient exercise and travel mode—has become increasingly popular in modern cities. In recent years, with the proliferation of sport apps and GPS mobile devices in daily life, the accumulated cycling trajectories have opened up valuable opportunities to explore the underlying cycling semantics to enable a better cycling experience. In this paper, based on large-scale GPS trajectories and road network data, we mainly explore cycling semantics from two perspectives. On one hand, from the perspective of the cyclists, trajectories could tell their frequently visited sequences of streets, thus potentially revealing their hidden cycling themes, i.e., cyclist behavior semantics. On the other hand, from the perspective of the road segments, trajectories could show the cyclists’ fine-grained moving features along roads, thus probably uncovering the moving semantics on roads. However, the extraction and understanding of such cycling semantics are nontrivial, since most of the trajectories are raw data and it is also difficult to aggregate the dynamic moving features from trajectories into static road segments. To this end, we establish a new visual analytic system called VizCycSemantics for pervasive computing, in which a topic model (i.e., LDA) is used to extract the topics of cyclist behavior semantics and moving semantics on roads, and a clustering method (i.e., k-means ++) is used to further capture the groups of similar cyclists and road segments within the city; finally, multiple interactive visual interfaces are implemented to facilitate the interpretation for analysts. We conduct extensive case studies in the city of Beijing to demonstrate the effectiveness and practicability of our system and also obtain various insightful findings and pieces of advice.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Using crowdsourced data to monitor change in spatial patterns of bicycle ridership;Boss;J. Transp. Health,2018

2. Characterizing cycling traffic fluency using big mobile activity tracking data;Brauer;Comput. Environ. Urban Syst.,2021

3. Commonwealth of Australia (2020, September 15). National Road Safety Action Plan 2021–30, Available online: https://www.roadsafety.gov.au/sites/default/files/documents/National-Road-Safety-Strategy-2021-30.pdf.

4. Ministry of Transport in China (2020, September 15). Guidelines of the Ministry of Transport and Other 10 Departments on Encouraging and Regulating the Development of Internet Bike Rental, Available online: https://www.mot.gov.cn/yijianzhengji/201705/P020170521640994522102.doc.

5. U.S. Department of Transportation (2020, September 16). Encourage and Promote Safe Bicycling and Walking., Available online: https://www.transportation.gov/mission/health/Encourage-and-Promote-Safe-Bicycling-and-Walking.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3