Deep Learning-Powered System for Real-Time Digital Meter Reading on Edge Devices

Author:

Carvalho Rafaela1ORCID,Melo Jorge1ORCID,Graça Ricardo1ORCID,Santos Gonçalo2,Vasconcelos Maria João M.1ORCID

Affiliation:

1. Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal

2. Glarevision, S.A., 2400-441 Leiria, Portugal

Abstract

The ongoing reading process of digital meters is time-consuming and prone to errors, as operators capture images and manually update the system with the new readings. This work proposes to automate this operation through a deep learning-powered solution for universal controllers and flow meters that can be seamlessly incorporated into operators’ existing workflow. Firstly, the digital display area of the equipment is extracted with a screen detection module, and a perspective correction step is performed. Subsequently, the text regions are identified with a fine-tuned EAST text detector, and the important readings are selected through template matching based on the expected graphical structure. Finally, a fine-tuned convolutional recurrent neural network model recognizes the text and registers it. Evaluation experiments confirm the robustness and potential for workload reduction of the proposed system, which correctly extracts 55.47% and 63.70% of the values for reading in universal controllers, and 73.08% of the values from flow meters. Furthermore, this pipeline performs in real time in a low-end mobile device, with an average execution time in preview of under 250 ms for screen detection and on an acquired photo of 1500 ms for the entire pipeline.

Funder

Agencia de Inovacao

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3