Research on the Applicability of Transformer Model in Remote-Sensing Image Segmentation

Author:

Yu Minmin12,Qin Fen1234

Affiliation:

1. The College of Geography and Environment Science, Henan University, Kaifeng 475004, China

2. Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions, Ministry of Education, Kaifeng 475004, China

3. Henan Technology Innovation Center of Spatio-Temporal Big Data, Henan University, Zhengzhou 450046, China

4. Henan Industrial Technology Academy of Spatio-Temporal Big Data, Henan University, Zhengzhou 450046, China

Abstract

Transformer models have achieved great results in the field of computer vision over the past 2 years, drawing attention from within the field of remote sensing. However, there are still relatively few studies on this model in the field of remote sensing. Which method is more suitable for remote-sensing segmentation? In particular, how do different transformer models perform in the face of high-spatial resolution and the multispectral resolution of remote-sensing images? To explore these questions, this paper presents a comprehensive comparative analysis of three mainstream transformer models, including the segmentation transformer (SETRnet), SwinUnet, and TransUnet, by evaluating three aspects: a visual analysis of feature-segmentation results, accuracy, and training time. The experimental results show that the transformer structure has obvious advantages for the feature-extraction ability of large-scale remote-sensing data sets and ground objects, but the segmentation performance of different transfer structures in different scales of remote-sensing data sets is also very different. SwinUnet exhibits better global semantic interaction and pixel-level segmentation prediction on the large-scale Potsdam data set, and the SwinUnet model has the highest accuracy metrics for KAPPA, MIoU, and OA in the Potsdam data set, at 76.47%, 63.62%, and 85.01%, respectively. TransUnet has better segmentation results in the small-scale Vaihingen data set, and the three accuracy metrics of KAPPA, MIoU, and OA are the highest, at 80.54%, 56.25%, and 85.55%, respectively. TransUnet is better able to handle the edges and details of feature segmentation thanks to the network structure together built by its transformer and convolutional neural networks (CNNs). Therefore, TransUnet segmentation accuracy is higher when using a small-scale Vaihingen data set. Compared with SwinUnet and TransUnet, the segmentation performance of SETRnet in different scales of remote-sensing data sets is not ideal, so SETRnet is not suitable for the research task of remote-sensing image segmentation. In addition, this paper discusses the reasons for the performance differences between transformer models and discusses the differences between transformer models and CNN. This study further promotes the application of transformer models in remote-sensing image segmentation, improves the understanding of transformer models, and helps relevant researchers to select a more appropriate transformer model or model improvement method for remote-sensing image segmentation.

Funder

Fen Qin

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3