Multi-Robot Collaborative Flexible Manufacturing and Digital Twin System Design of Circuit Breakers

Author:

Wang Linghao1,Shu Liang1ORCID,Zhou Hao2

Affiliation:

1. Engineering Research Center of Low-Voltage Apparatus Technology of Zhejiang Province, Wenzhou University, Wenzhou 325035, China

2. Technology Institute, Wenzhou University, Wenzhou 325699, China

Abstract

Circuit breakers (CBs) are mainly designed to interrupt current flow when faults are detected and have been widely used in industrial applications. The existing CBs manufacturing method is semi-automatic and requires a lot of labor. To realize flexible manufacturing, a multi-robot cooperative CBs flexible manufacturing system (CBFMS) is presented in this study. Aiming at the efficiency of the multi-robot cooperative CBFMS key units, a two-arm cooperation robot approach is proposed. The reinforcement learning algorithm is developed to optimize the manufacturing trajectory of the two-arm cooperation robot. To build and optimize the multi-robot cooperative CBFMS, a digital twin (DT) system describing all physical properties of the physical manufacturing plant is constructed for simulation. In the developed DT system, a kinematic control model of the collaboration robot is established. A real-time display of the robot’s trajectory, manufacturing status, and process manufacturing is provided by the data interaction with the physical cell flow between the units. Following this design, a synchronous mapping between the flexible manufacturing DT system of the CBs and the physical workshop is realized, which enables real-time monitoring and management of the physical production line. The experiments’ results show that the manufacturing efficiency, compared with traditional CBs production, is improved by 22%. Moreover, the multi-robot cooperative CBFMS can make process changes according to the production requirements, which can improve the stability of production.

Funder

Key R&D Project of Zhejiang Province

Basic Industrial Science and Technology Project of Wenzhou

Zhejiang Xinmiao Talents Program

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3