Label-Free Fault Detection Scheme for Inverters of PV Systems: Deep Reinforcement Learning-Based Dynamic Threshold

Author:

Seo Giup1ORCID,Yoon Seungwook1ORCID,Song Junyoung1ORCID,Srivastava Ekta1ORCID,Hwang Euiseok1ORCID

Affiliation:

1. Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea

Abstract

Generally, photovoltaic (PV) fault detection approaches can be divided into two groups: end-to-end and threshold methods. The end-to-end method typically uses a deep neural network (DNN) to learn fault patterns from labeled datasets, which directly detect whether faults occur or not. The threshold method first estimates power generation and uses thresholds to detect atypical deviations of measured values from estimated ones. The former method heavily relies on fault-labeled data and, therefore, requires the collection of abnormal event records, which is usually difficult, due to the sparseness of these events. The latter method typically uses statistical approaches, such as 3-sigma, to find thresholds, and it can be practically utilized without fault labels. However, setting a threshold with a proper confidence interval is still challenging, as PV power generation is sensitive to variations in environmental conditions, such as irradiance, ambient temperature, wind speed and humidity. In this paper, we propose a novel deep reinforcement learning (DRL)-based label-free fault detection scheme in which thresholds are dynamically assigned with suitable confidence intervals under varying environmental conditions. Various weather properties were used as input features (i.e., states) to a DRL agent, and proper thresholds were estimated in real time from the actions of the DRL agent. To this end, a reward function was designed for learning proper thresholds without fault labels under different weather conditions. To evaluate the performance of the proposed scheme, the PV dataset of the National Institute of Standards and Technology (NIST) was used, as it includes paired records of local weather and PV generations. The DRL-based scheme was compared with static and conventional dynamic threshold methods, based on statistical approaches. The results revealed that the proposed scheme outperformed the existing methods, providing a 5.67% higher F1-score in the NIST dataset.

Funder

GIST Research Institute

Korea Government through the Ministry of Science and Information and Communication Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3