Replication-Based Dynamic Energy-Aware Resource Provisioning for Scientific Workflows

Author:

Ala’anzy Mohammed Alaa1ORCID,Othman Mohamed12,Ibbini Emad Mohammed3,Enaizan Odai4,Farid Mazen1,Alsaaidah Yousef A.1ORCID,Ahmad Zulfiqar5ORCID,Ghoniem Rania M.6

Affiliation:

1. Department of Communication Technology and Networks, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

2. Laboratory of Computational Science and Mathematical Physics, Institute for Mathematical Research (INSPEM), Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

3. Department of Computer Science, Al Balqa Applied University, Al-Salt 19117, Jordan

4. Department of Management Information System, College of Haql, University of Tabuk, Tabuk 71491, Saudi Arabia

5. Department of Computer Science and Information Technology, Hazara University, Mansehra 21300, Pakistan

6. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

Distributed computing services in cloud environments are easily accessible to end users. These services are delivered to end users via a subscription-based model. The “infrastructure as a service” (IaaS) cloud model is one of the best cloud environment models for running data- and computing-intensive applications. Real-world scientific applications are the best examples of data and computing intensiveness. For their implementation, scientific workflow applications need high-performance computational resources and a large volume of storage. The workflow tasks are linked based on computational and data interdependence. Considering the high volume and variety of scientific workflows (SWs), the resources of the IaaS cloud model require managing energy efficiently and without failure or loss. Therefore, in order to address the issues of power consumption and task failure for real-world SWs, this research work proposes a replication-based dynamic energy-aware resource provisioning (R-DEAR) strategy for SWs in an IaaS cloud environment. The proposed strategy, R-DEAR, is a resource- and service-provisioning strategy that implements a replication-based fault-tolerant and load-balancing mechanism. The proposed R-DEAR strategy schedules the tasks of a scientific workflow with a replication-based fault-tolerant mechanism. The proposed R-DEAR strategy also manages the power consumption of IaaS cloud resources dynamically through a load-sharing process. Simulation results show that the proposed R-DEAR strategy reduces energy consumption, execution cost, and execution time by 9%, 15%, and 18%, respectively, as compared with the existing state-of-the-art strategy.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3