Affiliation:
1. Academy of Management Science, Business School, Shandong Normal University, Jinan 250014, China
Abstract
Density Peaks Clustering (DPC) has recently received much attention in many fields by reason of its simplicity and efficiency. Nevertheless, empirical studies have shown that DPC has some shortfalls: (i) similarity measurement based on Euclidean distance is prone to misclassification. When dealing with clusters of non-uniform density, it is very difficult to identify true clustering centers in the decision graph; (ii) the clustering centers need to be manually selected; (iii) the chain reaction; an incorrectly assigned point will affect the clustering outcome. To settle the above limitations, we propose an improved density peaks clustering algorithm based on a divergence distance and tissue—like P system (TP-DSDPC in short). In the proposed algorithm, a novel distance measure is introduced to accurately estimate the local density and relative distance of each point. Then, clustering centers are automatically selected by the score value. A tissue—like P system carries out the entire algorithm process. In terms of the three evaluation metrics, the improved algorithm outperforms the other comparison algorithms using multiple synthetic and real-world datasets.
Funder
National Natural Science Foundation of China
Natural Science Foundation of the Shandong Provincial
China Postdoctoral Science Foundation Funded Project
China Post-doctoral Special Funding Project
Youth Fund for Humanities and Social Sciences, Ministry of Education
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献