Affiliation:
1. Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 200120, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract
Despite the growing capabilities of the short-term prediction of photovoltaic power, we still face two challenges to longer time-range predictions: error accumulation and long-term time series feature extraction. In order to improve the longer time range prediction accuracy of photovoltaic power, this paper proposes a seq2seq prediction model TCNformer, which outperforms other state-of-the-art (SOTA) algorithms by introducing variable selection (VS), long- and short-term time series feature extraction (LSTFE), and one-step temporal convolutional network (TCN) decoding. A VS module employs correlation analysis and periodic analysis to separate the time series correlation information, LSTFE extracts multiple time series features from time series data, and one-step TCN decoding realizes generative predictions. We demonstrate here that TCNformer has the lowest mean squared error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) in contrast to the other algorithms in the field of the short-term prediction of photovoltaic power, and furthermore, the effectiveness of each module has been verified through ablation experiments.
Funder
AI assisted optimization of hybrid energy system and techno-enviro-economic analysis of green hydrogen supply chain
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献