Obtaining Polysaccharide-Based Fabrics with Improved Moisture Sorption and Dye Adsorption Properties

Author:

Ivanovska Aleksandra1ORCID,Milošević Marija2,Lađarević Jelena2ORCID,Pavun Leposava3ORCID,Svirčev Zorica45,Kostić Mirjana2ORCID,Meriluoto Jussi45ORCID

Affiliation:

1. Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, 11120 Belgrade, Serbia

2. Faculty of Technology and Metallurgy, University of Belgrade, 11120 Belgrade, Serbia

3. Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia

4. Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

5. Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, 20520 Turku, Finland

Abstract

Raw jute fabric was treated with 0.5, 1.0, or 2.0% chitosan solution to improve its sorption properties (evaluated through the moisture sorption and adsorption of textile dye Reactive Orange 16 (RO 16)), which are essential for fabric utilization as geo-prebiotic polysaccharide support that should provide the necessary water for the growth of cyanobacterial communities in biocarpet engineering. Chitosan-treated fabrics possessed 39–78% higher moisture sorption values than the untreated ones. Concerning the dye adsorption, with the increase in its initial concentration, the adsorption potential of raw and fabrics treated with 0.5 or 1.0% chitosan solution was increased up to 1.9 times. The dye adsorption onto these fabrics was exothermic and enthalpy driven. By increasing the chitosan solution percentage up to 1.0%, fabric adsorption potential increased up to 2.2 times. An inverse relationship was observed in the case of the fabric treated with 2.0% chitosan solution, its adsorption potential decreased with increasing the initial dye concentration and temperature due to the different dominant binding interactions. Concerning the contact time, dye adsorption onto fabric treated with 1.0% chitosan solution was rapid in the first 2 h, while the equilibrium was attained after 4.5 h. The isotherm and kinetic data were represented by the Langmuir model and the pseudo-second-order kinetic model, respectively.

Funder

Science Fund of the Republic of Serbia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3