Phase I Analysis of Nonlinear Profiles Using Anomaly Detection Techniques

Author:

Cheng Chuen-Sheng1ORCID,Chen Pei-Wen1ORCID,Wu Yu-Tang1

Affiliation:

1. Department of Industrial Engineering and Management, Yuan Ze University, No. 135, Yuan-Tung Road, Chung-Li District, Taoyuan City 32003, Taiwan

Abstract

In various industries, the process or product quality is evaluated by a functional relationship between a dependent variable y and one or a few input variables x, expressed as y=fx. This relationship is called a profile in the literature. Recently, profile monitoring has received a lot of research attention. In this study, we formulated profile monitoring as an anomaly-detection problem and proposed an outlier-detection procedure for phase I nonlinear profile analysis. The developed procedure consists of three key processes. First, we obtained smoothed nonlinear profiles using the spline smoothing method. Second, we proposed a method for estimating the proportion of outliers in the dataset. A distance-based decision function was developed to identify potential outliers and provide a rough estimate of the contamination rate. Finally, PCA was used as a dimensionality reduction method. An outlier-detection algorithm was then employed to identify outlying profiles based on the estimated contamination rate. The algorithms considered in this study included Local Outlier Factor (LOF), Elliptic Envelope (EE), and Isolation Forest (IF). The proposed procedure was evaluated using a nonlinear profile that has been studied by various researchers. We compared various competing methods based on commonly used metrics such as type I error, type II error, and F2 score. Based on the evaluation metrics, our experimental results indicate that the performance of the proposed method is better than other existing methods. When considering the smallest and hardest-to-detect variation, the LOF algorithm, with the contamination rate determined by the method proposed in this study, achieved type I errors, type II errors, and F2 scores of 0.049, 0.001, and 0.951, respectively, while the performance metrics of the current best method were 0.081, 0.015, and 0.899, respectively.

Funder

National Science and Technology Council, R.O.C.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3