Long-Term Structural State Trend Forecasting Based on an FFT–Informer Model

Author:

Ma Jihao1ORCID,Dan Jingpei1

Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 400044, China

Abstract

Machine learning has been widely applied in structural health monitoring. While most existing methods, which are limited to forecasting structural state evolution of large infrastructures. forecast the structural state in a step-by-step manner, extracting feature of structural state trends and the negative effects of data collection under abnormal conditions are big challenges. To address these issues, a long-term structural state trend forecasting method based on long sequence time-series forecasting (LSTF) with an improved Informer model integrated with Fast Fourier transform (FFT) is proposed, named the FFT–Informer model. In this method, by using FFT, structural state trend features are represented by extracting amplitude and phase of a certain period of data sequence. Structural state trend, a long sequence, can be forecasted in a one-forward operation by the Informer model that can achieve high inference speed and accuracy of prediction based on the Transformer model. Furthermore, a Hampel filter that filters the abnormal deviation of the data sequence is integrated into the Multi-head ProbSparse self-attention in the Informer model to improve forecasting accuracy by reducing the effect of abnormal data points. Experimental results on two classical data sets show that the FFT–Informer model achieves high and stable accuracy and outperforms the comparative models in forecasting accuracy. It indicates that this model can effectively forecast the long-term state trend change of a structure and is proposed to be applied to structural state trend forecasting and early damage warning.

Funder

Humanities and Social Science Planning Fund from the Ministry of Education of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Image-based crack assessment of bridge piers using unmanned aerial vehicles and three-dimensional scene reconstruction;Liu;Comput.-Aided Civ. Infrastruct. Eng.,2020

2. A novel machine learning-based algorithm to detect damage in high-rise building structures;Rafiei;Struct. Des. Tall Spec. Build.,2017

3. Structural health monitoring of civil engineering structures by using the internet of things: A review;Mishra;J. Bulid. Eng.,2022

4. A literature review of next-generation smart sensing technology in structural health monitoring;Sony;Struct. Control Health Monit.,2019

5. Intrinsic self-sensing concrete and structures: A review;Han;Measurement,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3