Underwater Object Detection Method Based on Improved Faster RCNN

Author:

Wang Hao1,Xiao Nanfeng1

Affiliation:

1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China

Abstract

In order to better utilize and protect marine organisms, reliable underwater object detection methods need to be developed. Due to various influencing factors from complex and changeable underwater environments, the underwater object detection is full of challenges. Therefore, this paper improves a two-stage algorithm of Faster RCNN (Regions with Convolutional Neural Network Feature) to detect holothurian, echinus, scallop, starfish and waterweeds. The improved algorithm has better performance in underwater object detection. Firstly, we improved the backbone network of the Faster RCNN, replacing the VGG16 (Visual Geometry Group Network 16) structure in the original feature extraction module with the Res2Net101 network to enhance the expressive ability of the receptive field of each network layer. Secondly, the OHEM (Online Hard Example Mining) algorithm is introduced to solve the imbalance problem of positive and negative samples of the bounding box. Thirdly, GIOU (Generalized Intersection Over Union) and Soft-NMS (Soft Non-Maximum Suppression) are used to optimize the regression mechanism of the bounding box. Finally, the improved Faster RCNN model is trained using a multi-scale training strategy to enhance the robustness of the model. Through ablation experiments based on the improved Faster RCNN model, each improved part is disassembled and then the experiments are carried out one by one, which can be known from the experimental results that, based on the improved Faster RCNN model, mAP@0.5 reaches 71.7%, which is 3.3% higher than the original Faster RCNN model, and the average accuracy reaches 43%, and the F1-score reaches 55.3%, a 2.5% improvement over the original Faster RCNN model, which shows that the proposed method in this paper is effective in underwater object detection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3