A Low-Cost Sensorized Vehicle for In-Field Crop Phenotyping

Author:

Antonucci Francesca1ORCID,Costa Corrado1ORCID,Figorilli Simone1ORCID,Ortenzi Luciano12ORCID,Manganiello Rossella1ORCID,Santangelo Enrico1ORCID,Gierz Łukasz3ORCID,Pallottino Federico1ORCID

Affiliation:

1. Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA), Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo, Italy

2. Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, Via S. Camillo De Lellis, s.n.c., 01100 Viterbo, Italy

3. Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

The development of high-throughput field phenotyping, which uses modern detection technologies and advanced data processing algorithms, could increase productivity and make in-field phenotypic evaluation more efficient by collecting large amounts of data with no or minimal human assistance. Moreover, high-throughput plant phenotyping systems are also very effective in selecting crops and characterizing germplasm for drought tolerance and disease resistance by using spectral sensor data in combination with machine learning. In this study, an affordable high-throughput phenotyping platform (phenomobile) aims to obtain solutions at reasonable prices for all the components that make up it and the many data collected. The goal of the practical innovation in field phenotyping is to implement high-performance precision phenotyping under real-world conditions at accessible costs, making real-time data analysis techniques more user-friendly. This work aims to test the ability of a phenotyping prototype system constituted by an electric phenomobile integrated with a MAIA multispectral camera for real in-field plant characterization. This was done by acquiring spectral signatures of F1 hybrid Elisir (Olter Sementi) tomato plants and calculating their vegetation indexes. This work allowed to collect, in real time, a great number of field data about, for example, the morphological traits of crops, plant physiological activities, plant diseases, fruit maturity, and plant water stress.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3