Bond Behavior between High-Strength Rebar and Steel-Fiber-Reinforced Concrete under the Influence of the Fraction of Steel Fiber by Volume and High Temperature

Author:

Li Xiaodong12ORCID,Lu Chengdong1ORCID,Cui Yifei12ORCID,Zhou Lichen13,Zheng Li1

Affiliation:

1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266525, China

2. Engineering Research Center of Concrete Technology under Marine Environment, Ministry of Education, Qingdao 266525, China

3. China Construction Third Bureau First Engineering Co., Ltd., Wuhan 430040, China

Abstract

Steel-fiber-reinforced concrete (SFRC) is a composite material made by randomly distributing short steel fibers in normal concrete (NC). In this study, central pull-out tests of 32 specimens were performed to investigate the bond behavior between high-strength rebar and SFRC under the influence of the fraction of steel fiber by volume (Vf = 0%, 0.5%, 1.0% and 1.5%) and temperature (T = 20, 200, 400 and 600 °C). The results show that in NC specimens, splitting failure occurs below 400 °C, while split-pullout failure occurs above 600 °C. Split-pullout failure occurs in all SFRC specimens at each tested temperature. The bond strength between rebar and SFRC was found to decay significantly between 400 and 600 °C. The effect of Vf on the improvement in bond strength was more obvious between 400 and 600 °C than between 20 and 400 °C. The positive contribution of steel fibers to bond behavior is the construction of a rigid skeleton with coarse aggregates that can play a bridging role and effectively retard the expansion of concrete cracks. This improves the bond strength between rebar and SFRC at high temperatures. The bond–slip curve can be divided into five stages, namely the initial micro-slide phase, slip phase, splitting failure phase, stress drop phase and residual pull-out phase. A model of the bond–slip relationship between rebar and SFRC considering temperature and Vf was developed by modifying the existing model of the bond–slip relationship between rebar and NC. The model calculation results agree well with those of testing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3