Comparison of Smartphone and Drone Lidar Methods for Characterizing Spatial Variation in PAI in a Tropical Forest

Author:

E. Rudic TamaraORCID,A. McCulloch LindsayORCID,Cushman KatherineORCID

Abstract

Estimating leaf area index (LAI) and assessing spatial variation in LAI across a landscape is crucial to many ecological studies. Several direct and indirect methods of LAI estimation have been developed and compared; however, many of these methods are prohibitively expensive and/or time consuming. Here, we examine the feasibility of using the free image processing software CAN-EYE to estimate effective plant area index (PAIeff) from hemispherical canopy images taken with an extremely inexpensive smartphone clip-on fisheye lens. We evaluate the effectiveness of this inexpensive method by comparing CAN-EYE smartphone PAIeff estimates to those from drone lidar over a lowland tropical forest at La Selva Biological Station, Costa Rica. We estimated PAIeff from drone lidar using a method based in radiative transfer theory that has been previously validated using simulated data; we consider this a conservative test of smartphone PAIeff reliability because above-canopy lidar estimates share few assumptions with understory image methods. Smartphone PAIeff varied from 0.1 to 4.4 throughout our study area and we found a significant correlation (r = 0.62, n = 42, p < 0.001) between smartphone and lidar PAIeff, which was robust to image processing analytical options and smartphone model. When old growth and secondary forests are assumed to have different leaf angle distributions for the lidar PAIeff algorithm (spherical and planophile, respectively) this relationship is further improved (r = 0.77, n = 42, p < 0.001). However, we found deviations in the magnitude of the PAIeff estimations depending on image analytical options. Our results suggest that smartphone images can be used to characterize spatial variation in PAIeff in a complex, heterogenous tropical forest canopy, with only small reductions in explanatory power compared to true digital hemispherical photography.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3