Abstract
A method to detect abrupt land cover changes using hierarchical clustering of multi-temporal satellite imagery was developed. The Autochange method outputs the pre-change land cover class, the change magnitude, and the change type. Pre-change land cover information is transferred to post-change imagery based on classes derived by unsupervised clustering, enabling using data from different instruments for pre- and post-change. The change magnitude and change types are computed by unsupervised clustering of the post-change image within each cluster, and by comparing the mean intensity values of the lower level clusters with their parent cluster means. A computational approach to determine the change magnitude threshold for the abrupt change was developed. The method was demonstrated with three summer image pairs Sentinel-2/Sentinel-2, Landsat 8/Sentinel-2, and Sentinel-2/ALOS 2 PALSAR in a study area of 12,372 km2 in southern Finland for the detection of forest clear cuts and tested with independent data. The Sentinel-2 classification produced an omission error of 5.6% for the cut class and 0.4% for the uncut class. Commission errors were 4.9% for the cut class and 0.4% for the uncut class. For the Landsat 8/Sentinel-2 classifications the equivalent figures were 20.8%, 0.2%, 3.4%, and 1.6% and for the Sentinel-2/ALOS PALSAR classification 16.7%, 1.4%, 17.8%, and 1.3%, respectively. The Autochange algorithm and its software implementation was considered applicable for the mapping of abrupt land cover changes using multi-temporal satellite data. It allowed mixing of images even from the optical and synthetic aperture radar (SAR) sensors in the same change analysis.
Funder
Seventh Framework Programme
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献