Self- and Mutual-Inductance Cross-Validation of Multi-Turn, Multi-Layer Square Coils for Dynamic Wireless Charging of Electric Vehicles

Author:

Liang Mincui1ORCID,El Khamlichi Drissi Khalil1,Pasquier Christopher1

Affiliation:

1. Institut Pascal, CNRS, Clermont Auvergne INP, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France

Abstract

Dynamic Wireless Power Transfer (DWPT) has high potential to overcome electric vehicles’ battery issues of size and range and to achieve fully autonomous driving. Accurately extracting the self- and mutual-inductance of the coils is essential for controlling and optimizing the overall performance of the DWPT system under real driving conditions. Due to the limited space for coil installation at the bottom of the vehicles, multi-turn, multi-layer square coils are proposed to maximize the space utilization of the DWPT system. For the first time, this paper presents a theoretical model for calculating the self- and mutual-inductance and the coupling coefficients of multi-turn, multi-layer square coils. Taking a four-turn, four-layer square coil as an example, the model is cross-validated by 3D coil modelling and simulation, as well as practical measurements. A theoretical–experimental verification is further conducted to indirectly corroborate the cross-validated coupling coefficients of the two coils. On average, the normalized root mean square errors of the resultant self-inductance and coupling coefficients of two identical coils are 1.04% and 4.29%, respectively. Specifically, for the selected case, normalized root mean square errors of the zero-phase angle frequencies of the system under different misalignment situations average out at 1.32%.

Funder

Innovation Transportation and Production Systems

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3