A Finite Element Analysis Model-Based Study on the Effect of the Frame on Membrane Stresses in Proton Exchange Membrane Fuel Cells

Author:

Zhang Zikuan1,Tan Yongle23,Yang Daozeng23,Chu Tiankuo23,Li Bing23

Affiliation:

1. Horizon Fuel Cell Technologies (Shanghai) Co., Ltd., 999 Shan’lian Road, Shanghai 201804, China

2. School of Automotive Studies, Tongji University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China

3. Clean Energy Automotive Engineering Center, Tongji University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China

Abstract

The frame of a membrane electrode assembly (MEA) has an important impact on durability and reliability of a proton exchange membrane fuel cell (PEMFC). In this study, the finite element analysis method has been used to build a two-dimensional model that can quickly screen and compare different frame structures and improve the design. Simulation results show that the membrane in the gap between the frame and the active area will generate a large amount of stress, close to the yield strength of the membrane under this condition, after application of the pressure difference. Further, an appropriate frame structure can improve the structural consistency between the frame and the area with moving materials, reduce membrane stress and improve reliability. The problem of stress concentration on the membrane at the joint area is solved by introducing a double-layer frame structure to limit membrane deformation. Hence, this can effectively alleviate the impact of the gap at the joint area and improve the durability of MEA.

Funder

Ministry of Science & Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3