Hydrothermal Carbonization of Sewage Sludge: New Improvements in Phosphatic Fertilizer Production and Process Water Treatment Using Freeze Concentration

Author:

Gerner Gabriel1,Chung Jae Wook1,Meyer Luca1,Wanner Rahel1,Heiniger Simon1,Seiler Daniel1,Krebs Rolf1ORCID,Treichler Alexander2,Kontic Roman3,Kulli Beatrice1

Affiliation:

1. Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland

2. Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences (ZHAW), Campus Reidbach, CH-8820 Wädenswil, Switzerland

3. School of Engineering, Zurich University of Applied Sciences (ZHAW), CH-8401 Winterthur, Switzerland

Abstract

In recent years, promising developments in the hydrothermal carbonization (HTC) of sewage sludge, as well as the potential to reclaim phosphorus and nitrogen, have emerged. In this study, the HTC of digested sewage sludge (DSS) was investigated for the downstream production of heavy metal (HM)-free fertilizer and the use of freeze concentration (FC) as a novel technology for process water treatment. To obtain clean fertilizer, phosphatic acid extracts were first treated with ion-exchange resins to remove dissolved HM, as well as phosphorus precipitating agents (i.e., aluminum and iron). Over 98% of the aluminum (Al) and 97% of the iron (Fe) could be removed in a single treatment step. The purified extract was then used for the precipitation of HM-free struvite crystals, with P-recovery rates exceeding 89%. Process water (PW) makes up the largest share of the two main HTC-products (i.e., hydrochar and PW) and is very rich in organic compounds. Compared to evaporation or membrane separation, FC is a promising technology for concentrating solutes from PW. Separation experiments resulted in the recovery of over 90% of the dissolved compounds in the concentrate. In our study, the concentrate was later utilized as an ammonium source for struvite precipitation, and the subsequent aerobic digestion of the remaining ice water resulted in an 85% reduction in chemical oxygen demand (COD) in 15 days.

Funder

Association of the Swiss Cement Industry

Zurich University of Applied Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3