Modeling of Biomass Gasification: From Thermodynamics to Process Simulations

Author:

Marcantonio Vera1ORCID,Di Paola Luisa1ORCID,De Falco Marcello1ORCID,Capocelli Mauro1ORCID

Affiliation:

1. Unit of Process Engineering, Department of Science and Technology for Sustainable Development and One Health, University “Campus Bio-Medico” di Roma, Via Álvaro Del Portillo 21, 00128 Rome, Italy

Abstract

Biomass gasification has obtained great interest over the last few decades as an effective and trustable technology to produce energy and fuels with net-zero carbon emissions. Moreover, using biomass waste as feedstock enables the recycling of organic wastes and contributing to circular economy goals, thus reducing the environmental impacts of waste management. Even though many studies have already been carried out, this kind of process must still be investigated and optimized, with the final aim of developing industrial plants for different applications, from hydrogen production to net-negative emission strategies. Modeling and development of process simulations became an important tool to investigate the chemical and physical behavior of plants, allowing raw optimization of the process and defining heat and material balances of plants, as well as defining optimal geometrical parameters with cost- and time-effective approaches. The present review paper focuses on the main literature models developed until now to describe the biomass gasification process, and in particular on kinetic models, thermodynamic models, and computational fluid dynamic models. The aim of this study is to point out the strengths and the weakness of those models, comparing them and indicating in which situation it is better to use one approach instead of another. Moreover, theoretical shortcut models and software simulations not explicitly addressed by prior reviews are taken into account. For researchers and designers, this review provides a detailed methodology characterization as a guide to develop innovative studies or projects.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3