Autonomous Scheduling for Reliable Transmissions in Industrial Wireless Sensor Networks

Author:

Darbandi Armaghan1,Kim Myung-Kyun1

Affiliation:

1. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea

Abstract

Deploying Internet of Things (IoT) on low-power lossy wireless sensor/actuator networks (LLN) in harsh industrial environments presents challenges such as dynamic link qualities due to noise, signal attenuations and spurious interferences. However, the critical demand for industrial applications is reliability of data delivery on low-cost low-power sensor/actuator devices. To address these issues, this paper proposes a fully autonomous scheduling approach, called Auto-Sched, which ensures reliability of data delivery for both downlink and uplink traffic scheduling and enhances network robustness against node/link failures. To ensure reliability, Auto-Sched assigns retransmission time slots based on the reliability constraints of the communication link. To avoid collision issues, Auto-Sched creates an upward pipeline-like communication schedule for uplink end-to-end data delivery, and a downward pipeline-like communication schedule for downlink scheduling. For enhancing network robustness, we propose a simple algorithm for real-time autonomous schedule reconstruction, when node or link failures occur, with minimal influence on communication overhead. Performance evaluations quantified the performance of our proposed approaches under a variety of scenarios comparing them with existing approaches.

Funder

Institute of Information & communications Technology Planning & evaluation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference25 articles.

1. Recent and emerging topics in wireless industrial communications: A selection;Willig;IEEE Trans. Ind. Informat.,2008

2. Guest editorial: Special section on wireless technologies in factory and industrial automation, Part I;Miorandi;IEEE Trans. Ind. Informat.,2008

3. Smart grid infrastructure using a hybrid network architecture;Salvadori;IEEE Tran. Smart Grid,2013

4. Wellness sensor networks: A proposal and implementation for smart home for assisted living sign in or purchase;Ghayvat;IEEE Sens. J.,2015

5. (2023, August 25). IETF 6TiSCH Working Group. Available online: https://datatracker.ietf.org/wg/6tisch/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3