Design and Conceptual Development of a Novel Hybrid Intelligent Decision Support System Applied towards the Prevention and Early Detection of Forest Fires

Author:

Casal-Guisande ManuelORCID,Bouza-Rodríguez José-BenitoORCID,Cerqueiro-Pequeño JorgeORCID,Comesaña-Campos AlbertoORCID

Abstract

Forest fires have become a major problem that every year has devastating consequences at the environmental level, negatively impacting the social and economic spheres of the affected regions. Aiming to mitigate these terrible effects, intelligent prediction models focused on early fire detection are becoming common practice. Considering mainly a preventive approach, these models often use tools that indifferently apply statistical or symbolic inference techniques. However, exploring the potential for the hybrid use of both, as is already being done in other research areas, is a significant novelty with direct application to early fire detection. In this line, this work proposes the design, development, and proof of concept of a new intelligent hybrid system that aims to provide support to the decisions of the teams responsible for defining strategies for the prevention, detection, and extinction of forest fires. The system determines three risk levels: a general one called Objective Technical Fire Risk, based on machine learning algorithms, which determines the global danger of a fire in some area of the region under study, and two more specific others which indicate the risk over a limited area of the region. These last two risk levels, expressed in matrix form and called Technical Risk Matrix and Expert Risk Matrix, are calculated through a convolutional neural network and an expert system, respectively. After that, they are combined by means of another expert system to determine the Global Risk Matrix that quantifies the risk of fire in each of the study regions and generates a visual representation of these results through a color map of the region itself. The proof of concept of the system has been carried out on a set of historical data from fires that occurred in the Montesinho Natural Park (Portugal), demonstrating its potential utility as a tool for the prevention and early detection of forest fires. The intelligent hybrid system designed has demonstrated excellent predictive capabilities in such a complex environment as forest fires, which are conditioned by multiple factors. Future improvements associated with data integration and the formalization of knowledge bases will make it possible to obtain a standard tool that could be used and validated in real time in different forest areas.

Publisher

MDPI AG

Subject

Forestry

Reference63 articles.

1. Goldammer, J., Mitsopoulos, I., Mallinis, G., and Woolf, M. (2017). Words into Action Guidelines-National Disaster Risk Assessment, United Nations Office for Disaster Risk Reduction.

2. San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Libertá, G., Artés-Vivancos, T., Oom, D., Branco, A., de Rigo, D., and Ferrari, D. (2021). Forest Fires in Europe Middle East and North Africa 2020, Publications Office of the European Union.

3. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems;Abid;Fire Technol.,2021

4. A Survey of Multiple Classifier Systems as Hybrid Systems;Corchado;Inf. Fusion,2014

5. Dynamics of Forest Fires in the Southwestern Amazon;Fearnside;For. Ecol. Manag.,2018

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3