Application of the Iterative Ensemble Smoother Method and Cloud Computing: A Groundwater Modeling Case Study

Author:

Hayley Kevin,Valenza Alexis,White Emma,Hutchison Bruce,Schumacher Jens

Abstract

Numerical groundwater modelling to support mining decisions is often challenging and time consuming. Simulation of open pit mining for model calibration or prediction requires models that include unsaturated flow, large magnitude hydraulic gradients and often require transient simulations with time varying material properties and boundary conditions. This combination of factors typically results in models with long simulation times and/or some level of numerical instability. In modelling practice, long run times and instability can result in reduced effort for predictive uncertainty analysis, and ultimately decrease the value of the decision-support modelling. This study presents an early application of the Iterative Ensemble Smoother (IES) method of calibration-constrained uncertainty analysis to a mining groundwater flow model. The challenges of mining models and uncertainty quantification were addressed using the IES method and facilitated by highly parallelized cloud computing. The project was an open pit mine in South Australia that required predictions of pit water levels and inflow rates to guide the design of a proposed pumped hydro energy storage system. The IES calibration successfully produced 150 model parameter realizations that acceptably reproduced groundwater observations. The flexibility of the IES method allowed for the inclusion of 1493 adjustable parameters and geostatistical realizations of hydraulic conductivity fields to be included in the analysis. Through the geostatistical realizations and IES analysis, alternative conceptual models of fractured rock aquifer orientation and connections could be conditioned to observation data and used for predictive uncertainty analysis. Importantly, the IES method out-performed finite difference methods when model simulations contained small magnitude numerical instabilities.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference27 articles.

1. Calibration and Uncertainty Analysis for Complex Environmental Models;Doherty,2015

2. The Current State of Modeling

3. Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?

4. Debates-Stochastic subsurface hydrology from theory to practice: Why stochastic modeling has not yet permeated into practitioners?

5. Inverse Problem Theory and Methods for Model Parameter Estimation;Tarantola,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3