Abstract
Radial turbines used in automotive fuel cell turbochargers operate with humid air. The gas expansion in the turbine causes droplets to form, which then grow through condensation. The associated release of latent heat and decrease in the gaseous mass flow strongly influence the thermodynamics of the turbine. This study aims to investigate these phenomena. For this purpose, the classical nucleation theory and Young’s growth law are integrated into a Euler–Lagrange approach. The main advantages of this approach are the calculation of individual droplet trajectories and a full resolution of the droplet spectrum. The results indicate an onset of nucleation at the blade tip and in the tip gap, followed by nucleation over the entire blade span, depending on the humidity at the turbine inlet. With a saturated turbine inflow, condensation causes the outlet temperature to rise to almost the same level as at the inlet. In addition, condensation losses reduce the efficiency and the latent heat released by condensation leads to significant thermal throttling.
Funder
Bundesministerium für Verkehr und Digitale Infrastruktur
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献