Effect of Different Subgrid-Scale Models and Inflow Turbulence Conditions on the Boundary Layer Transition in a Transonic Linear Turbine Cascade

Author:

Bertolini EttoreORCID,Pieringer Paul,Sanz WolfgangORCID

Abstract

The aim of this work is to study the influence of different subgrid-scale (SGS) closure models and inflow turbulence conditions on the boundary layer transition on the suction side of a highly loaded transonic turbine cascade in the presence of high free-stream turbulence using large eddy simulations (LES) of the MUR237 test case. For the numerical simulations, the MUR237 flow case was considered and the incoming free-stream turbulence was reproduced using the synthetic eddy method (SEM). The boundary layer transition on the blade suction side was found to be significantly influenced by the choice of the SGS closure model and the SEM parameters. These two aspects were carefully evaluated in this work. Initially, the influence of three different closure models (Smagorinsky, WALE, and subgrid-scale kinetic energy model) was evaluated. Among them, the WALE SGS closure model performed best compared to the Smagorinsky and KEM models and, for this reason, was used in the following analysis. Finally, different values of the turbulence length scale, eddies density, and inlet turbulence for the SEM were evaluated. As shown by the results, among the different parameters, the choice of the turbulence length scale plays a major role in the transition onset on the blade suction side.

Funder

Bundesministerium für Verkehr, Innovation und Technologie

Publisher

MDPI AG

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3