Redundancy Exploitation of an 8-DoF Robotic Assistant for Doppler Sonography

Author:

Gautreau ElieORCID,Sandoval Juan,Thomas Aurélien,Guilhem Jean-Michel,Carbone GiuseppeORCID,Zeghloul Saïd,Laribi Med AmineORCID

Abstract

The design of a teleoperated 8-DoF redundant robot for Doppler sonography is detailed in this paper. The proposed robot is composed of a 7-DoF robotic arm mounted on a 1-DoF linear axis. This solution has been conceived to allow Doppler ultrasound examination of the entire patient’s body. This paper details the design of the platform and proposes two alternative control modes to deal with its redundancy at the torque level. The first control mode considers the robot as a full 8-DoF kinematics chain, synchronizing the action of the eight joints and improving the global robot manipulability. The second control mode decouples the 7-DoF arm and the linear axis controllers and proposes a switching strategy to activate the linear axis motion when the robot arm approaches the workspace limits. Moreover, a new adaptive Joint-Limit Avoidance (JLA) strategy is proposed with the aim of exploiting the redundancy of the 7-DoF anthropomorphic arm. Unlike classical JLA approaches, a weighting matrix is actively adapted to prioritize those joints that are approaching the mechanical limits. Simulations and experimental results are presented to verify the effectiveness of the proposed control modes.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference25 articles.

1. Current Capabilities and Development Potential in Surgical Robotics

2. History—Da Vinci Surgery Is Born. August 2012http://www.intuitivesurgical.com/company/history/is_born.html

3. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures

4. Perioperative management of unicompartmental knee arthroplasty using the MAKO robotic arm system (MAKOplasty);Pearle;Am. J. Orthop.,2009

5. ViKY Robotic Scope Holder: Initial Clinical Experience and Preliminary Results Using Instrument Tracking

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3