Electrical Properties of Li+-Doped Potassium Sodium Niobate Coating Prepared by Supersonic Plasma Spraying

Author:

Song Yaya,Huang Yanfei,Guo Weiling,Zhou Xinyuan,Xing Zhiguo,He DongyuORCID,Lv Zhenlin

Abstract

The current work aims to compare the effects of systematic A-site substitutions on the electrical properties of potassium sodium niobate (KNN)-based coating. The A-site elements were replaced by Li+ to form (K0.4675Na0.4675Li0.065) NbO3 (KNLN). The pure KNN coating and the Li+-doped potassium sodium niobate (KNLN) coating with dense morphology and single perovskite structure were successfully prepared by supersonic plasma spraying, and the phase composition, microscopic morphology and electrical properties of the two coatings were compared and analyzed in detail by XRD, XPS, three-dimensional morphology and SEM on an Agilent 4294A (Santa Clara, CA, USA) and FE-5000 wide-range ferroelectric performance tester. The results show that: as the polarization voltage increases, the pure KNN coating is flatter and fuller, but the leakage current is large. The KNLN coating has a relatively long hysteresis loop and is easily polarized. The domain deflection responds faster to the external electric field, and the resistance of the domain wall motion to the external electric field is small. The dielectric constant of KNLN coating is 375, which is much higher than that of the pure KNN coating with 125, and the dielectric loss is stable at 0.01, which is lower than that of pure KNN coating at 0.1–0.35. This is because Li+ doping has successfully constructed a polycrystalline phase boundary in which O-T phases coexist, and has higher dielectric properties, piezoelectric properties and ferroelectric properties. At the same time, due to the high-temperature acceleration process in supersonic plasma spraying, the violent volatilization of the alkaline elements Li+, Na+ and K+ leads to the presence of oxygen vacancies and part of Nb4+ in the coating, which seriously affects the electrical properties of the coating.

Funder

General program of the National Natural Science Foundation of China and General program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3