Non-Invasive Monitoring of the Spatio-Temporal Dynamics of Vocalizations among Songbirds in a Semi Free-Flight Environment Using Robot Audition Techniques

Author:

Sumitani ShinjiORCID,Suzuki ReijiORCID,Arita TakayaORCID,Nakadai KazuhiroORCID,Okuno Hiroshi G.ORCID

Abstract

To understand the social interactions among songbirds, extracting the timing, position, and acoustic properties of their vocalizations is essential. We propose a framework for automatic and fine-scale extraction of spatial-spectral-temporal patterns of bird vocalizations in a densely populated environment. For this purpose, we used robot audition techniques to integrate information (i.e., the timing, direction of arrival, and separated sound of localized sources) from multiple microphone arrays (array of arrays) deployed in an environment, which is non-invasive. As a proof of concept of this framework, we examined the ability of the method to extract active vocalizations of multiple Zebra Finches in an outdoor mesh tent as a realistic situation in which they could fly and vocalize freely. We found that localization results of vocalizations reflected the arrangements of landmark spots in the environment such as nests or perches and some vocalizations were localized at non-landmark positions. We also classified their vocalizations as either songs or calls by using a simple method based on the tempo and length of the separated sounds, as an example of the use of the information obtained from the framework. Our proposed approach has great potential to understand their social interactions and the semantics or functions of their vocalizations considering the spatial relationships, although detailed understanding of the interaction would require analysis of more long-term recordings.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3