Accelerometer-Based Human Activity Recognition for Patient Monitoring Using a Deep Neural Network

Author:

Fridriksdottir Esther,Bonomi Alberto G.

Abstract

The objective of this study was to investigate the accuracy of a Deep Neural Network (DNN) in recognizing activities typical for hospitalized patients. A data collection study was conducted with 20 healthy volunteers (10 males and 10 females, age = 43 ± 13 years) in a simulated hospital environment. A single triaxial accelerometer mounted on the trunk was used to measure body movement and recognize six activity types: lying in bed, upright posture, walking, wheelchair transport, stair ascent and stair descent. A DNN consisting of a three-layer convolutional neural network followed by a long short-term memory layer was developed for this classification problem. Additionally, features were extracted from the accelerometer data to train a support vector machine (SVM) classifier for comparison. The DNN reached 94.52% overall accuracy on the holdout dataset compared to 83.35% of the SVM classifier. In conclusion, a DNN is capable of recognizing types of physical activity in simulated hospital conditions using data captured by a single tri-axial accelerometer. The method described may be used for continuous monitoring of patient activities during hospitalization to provide additional insights into the recovery process.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference60 articles.

1. The underrecognized epidemic of low mobility during hospitalization of older adults;Brown;J. Am. Geriatr. Soc.,2009

2. Activity level of hospital medical inpatients: An observational study;Kuys;Arch. Gerontol. Geriatr.,2012

3. Poor mobility in hospitalized adults of all ages;Mudge;J. Hosp. Med.,2016

4. Prevalence and Outcomes of Low Mobility in Hospitalized Older Patients;Brown;J. Am. Soc.,2004

5. Stepping toward discharge: Level of ambulation in hospitalized patients;Sallis;J. Hosp. Med.,2015

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3