Studying Tropical Dry Forests Secondary Succession (2005–2021) Using Two Different LiDAR Systems

Author:

Liu Chenzherui1ORCID,Sanchez-Azofeifa Arturo1ORCID,Bax Connor1

Affiliation:

1. Centre for Earth Observation Sciences (CEOS), Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada

Abstract

Chronosequence changes among Tropical Dry Forests (TDFs) are essential for understanding this unique ecosystem, which is characterized by its seasonality (wet and dry) and a high diversity of deciduous trees and shrubs. From 2005 to 2021, we used two different airborne LiDAR systems to quantify structural changes in the forest at Santa Rosa National Park. Line- and shape-based waveform metrics were used to record the overall changes in the TDF structure. Based on a 16-year growth analysis, notable variations in height-related profiles were observed, particularly for RH50, RH100, and waveform-produced canopy heights. The results showed that Cy and RG have increased since the forests have been growing, whereas Cx has decreased. The decrease in Cx is because ground returns are lower when the canopy density i and canopy height increase. A positive relationship was observed between Cy and CH, RG, and RH100, particularly for the wet season data collected in 2021. These findings provide important insights into the growth dynamics of TDFs in Santa Rosa National Park and could inform future conservation efforts.

Funder

National Science and Engineering Research Council of Canada (NSERC) Discovery Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3