Adversarial Robust Aerial Image Recognition Based on Reactive-Proactive Defense Framework with Deep Ensembles

Author:

Lu Zihao1,Sun Hao1,Ji Kefeng1,Kuang Gangyao1

Affiliation:

1. The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, National University of Defense Technology, Changsha 410073, China

Abstract

As a safety-related application, visual systems based on deep neural networks (DNNs) in modern unmanned aerial vehicles (UAVs) show adversarial vulnerability when performing real-time inference. Recently, deep ensembles with various defensive strategies against adversarial samples have drawn much attention due to the increased diversity and reduced variance for their members. Aimed at the recognition task of remote sensing images (RSIs), this paper proposes to use a reactive-proactive ensemble defense framework to solve the security problem. In reactive defense, we fuse scoring functions of several classical detection algorithms with the hidden features and average output confidences from sub-models as a second fusion. In terms of proactive defense, we attempt two strategies, including enhancing the robustness of each sub-model and limiting the transferability among sub-models. In practical applications, the real-time RSIs are first input to the reactive defense part, which can detect and reject the adversarial RSIs. The accepted ones are then passed to robust recognition with a proactive defense. We conduct extensive experiments on three benchmark RSI datasets (i.e., UCM, AID, and FGSC-23). The experimental results show that the deep ensemble method of reactive and proactive defense performs very well in gradient-based attacks. The analysis of the applicable attack scenarios for each proactive ensemble defense is also helpful for this field. We also perform a case study with the whole framework in the black-box scenario, and the highest detection rate reaches 93.25%. Most of the adversarial RSIs can be rejected in advance or correctly recognized by the enhanced deep ensemble. This article is the first one to combine reactive and proactive defenses with a deep ensemble against adversarial attacks in the context of RSI recognition for DNN-based UAVs.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3