Formation and Hazard Analysis of Landslide Damming Based on Multi-Source Remote Sensing Data

Author:

Shi Wei1234,Chen Guan134,Meng Xingmin134ORCID,Bian Shiqiang1234,Jin Jiacheng134,Wu Jie134,Huang Fengchun134,Chong Yan1234

Affiliation:

1. MOE Key Laboratory of Westen China’s Environmental Systems, School of Earth Sciences, Lanzhou University, Lanzhou 730000, China

2. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China

3. Gansu Geohazards Field Observation and Research Station, Lanzhou University, Lanzhou 730000, China

4. Technology & Innovation Centre for Environmental Geology and Geohazards Prevention, Lanzhou University, Lanzhou 730000, China

Abstract

Remote sensing plays an increasingly important role in the investigation of natural hazards, not only by obtaining specific data related to hazards, but also by realizing targeted research by combining with other data and/or technologies. Small-scale landslide hazard chain events occur frequently in mountainous areas with fragile geological environments and have strong destructive effects, yet have been somewhat understudied. This paper analyzes the Zhoujiaba (ZJB) landslide hazard chain that occurred in Longnan City on 18 August 2020. On the basis of the comprehensive application of multi-source remote sensing data, combined with time-series InSAR technology, electrical resistivity tomography (ERT), and numerical simulations, we studied the formation mechanism, damming characteristics, and potential outburst scenarios of this event. Our research suggests that geological structure and strong natural weathering are the preconditions for landslide development, which is eventually induced by extreme rainfall. Specific topographic conditions determine the rapid sliding and accumulation of landslide materials, and ultimately result in river damming. Our simulation results showed that a flood, rather than a debris flow, will be the result of dam outburst. When the simulated upstream inflow is 1.5 times that when the landslide occurred, 68% of the downstream village area will be flooded. The artificial spillway can effectively reduce the scale of the potential outburst flood, but there remains a risk of dam failure owing to the shallow depth. Our study of the hazard chain of a small-scale landslide using a combination of methods will provide a valuable reference for the analysis and treatment of similar hazard chains.

Funder

Second Tibetan Plateau Scientific Expedition and Research Program

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Program of Gansu Province

Important talent project of Gansu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3