PLI-SLAM: A Tightly-Coupled Stereo Visual-Inertial SLAM System with Point and Line Features

Author:

Teng Zhaoyu1ORCID,Han Bin1,Cao Jie12,Hao Qun123,Tang Xin1,Li Zhaoyang1

Affiliation:

1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China

2. Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314003, China

3. School of Opto-Electronic Engineering, Changchun University of Science and Technology, Changchun 130022, China

Abstract

Point feature-based visual simultaneous localization and mapping (SLAM) systems are prone to performance degradation in low-texture environments due to insufficient extraction of point features. In this paper, we propose a tightly-coupled stereo visual-inertial SLAM system with point and line features (PLI-SLAM) to enhance the robustness and reliability of systems in low-texture environments. We improve Edge Drawing lines (EDlines) for line feature detection by introducing curvature detection and a new standard for minimum line segment length to improve the accuracy of the line features, while reducing the line feature detection time. We contribute also with an improved adapting factor based on experiment to adjust the error weight of line features, which further improves the localization accuracy of the system. Our system has been tested on the EuRoC dataset. Tests on public datasets and in real environments have shown that PLI-SLAM achieves high accuracy. Furthermore, PLI-SLAM could still operate robustly even in some challenging environments. The processing time of our method is reduced by 28%, compared to the ORB-LINE-SLAM based on point and line, when using Line Segment Detector (LSD).

Funder

Beijing Nature Science Foundation of China

Science And Technology Entry program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3