Low Blind Zone Atmospheric Lidar Based on Fiber Bundle Receiving

Author:

Yin Zhenping1ORCID,Chen Qianyuan1,Yi Yang1,Bu Zhichao2,Wang Longlong1ORCID,Wang Xuan13ORCID

Affiliation:

1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China

2. Meteorological Observation Center, China Meteorological Administration, Beijing 100081, China

3. Wuhan Institute of Quantum Technology, Wuhan 430206, China

Abstract

Atmospheric constituents feature a large vertical gradient in concentration, especially at the first few hundred meters over the earth’s surface. Atmospheric lidar usually cannot cover this range due to the incomplete overlap effect or the limited dynamic range of detectors. This drawback is well known as the blind zone effect, which hinders the application of atmospheric lidars in many aspects. In this work, a method based on an optical fiber bundle was proposed to mitigate the blind zone effect. An optical fiber head with several stages, installed at the focal plane of the telescope, is used to receive backscatter light from different range levels. The design of the optical fiber head is analyzed with the ray-tracing technique. The optical fiber installed at the highest stage of the fiber head can collect far-range light like a small aperture, and all the other optical fibers are bundled into a near-range detection channel to receive backscatter light from the first few hundred meters. This special design can avoid the near-range light loss in conventional lidar systems, usually equipped with a small aperture. Different optical attenuations are then applied to near-range and far-range channels to suppress the overall signal dynamic range. This light-receiving method was applied in a 1030 nm elastic lidar, in which a fiber bundle with a three-stage fiber head was fabricated and installed. A test experiment was performed to verify this approach. A good agreement between simulations and in-system results was found. Based on this design, the blind zone of the lidar system is less than 50 m, and the detectable range can be over 10 km along the lidar’s line of sight with a single telescope receiver. This approach brings a new way of designing atmospheric lidar with a low blind zone and can strengthen our ability to monitor urban pollution and promote land-atmosphere interaction research.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Innovation and Development Project of China Meteorological Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3