Effective Improvement of the Accuracy of Snow Cover Discrimination Using a Random Forests Algorithm Considering Multiple Factors: A Case Study of the Three-Rivers Headwater Region, Tibet Plateau

Author:

He Rui123,Qin Yan4,Zhao Qiudong123,Chang Yaping1ORCID,Jin Zizhen5

Affiliation:

1. State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830017, China

5. Department of Geography, Xinzhou Normal University, Xinzhou 034000, China

Abstract

Accurate information on snow cover extent plays a crucial role in understanding regional and global climate change, as well as the water cycle, and supports the sustainable development of socioeconomic systems. Remote sensing technology is a vital tool for monitoring snow cover’ extent, but accurate identification of shallow snow cover on the Tibetan Plateau has remained challenging. Focusing on the Three-Rivers Headwater Region (THR), this study addressed this issue by developing a snow cover discrimination model (SCDM) using a random forests (RF) algorithm. Using daily observed snow depth (SD) data from 15 stations in the THR during the period 2001–2013, a comprehensive analysis was conducted, considering various factors influencing regional snow cover distribution, such as land surface reflectance, land surface temperature (LST), Normalized Difference Snow Index (NDSI), Normalized Difference Vegetation Index (NDVI), and Normalized Difference Forest Snow Index (NDFSI). The key results were as follows: (1) Optimal model performance was achieved with the parameters Ntree, Mtry, and ratio set to 1000, 2, and 19, respectively. The SCDM outperformed other snow cover products in both pixel-scale and local spatial-scale discrimination. (2) Spectral information of snow cover proved to be the most influential auxiliary variable in discrimination, and the combined inclusion of NDVI and LST improved model performance. (3) The SCDM achieved accuracy of 99.04% for thick snow cover (SD > 4 cm) and 98.54% for shallow snow cover (SD ≤ 4 cm), significantly (p < 0.01) surpassing the traditional dynamic threshold method. This study can offer valuable reference for monitoring snow cover dynamics in regions with limited data availability.

Funder

a joint research program of the Three-Rivers-Source National Park

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

State Key Laboratory of Cryospheric Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3