A Combination of OBIA and Random Forest Based on Visible UAV Remote Sensing for Accurately Extracted Information about Weeds in Areas with Different Weed Densities in Farmland

Author:

Feng Chao1,Zhang Wenjiang1,Deng Hui1ORCID,Dong Lei2,Zhang Houxi3ORCID,Tang Ling1,Zheng Yu1,Zhao Zihan1

Affiliation:

1. College of Earth Science, Chengdu University of Technology, Chengdu 610059, China

2. No. 2 Geological Team, Tibet Autonomous Region Geological Mining Exploration and Development Bureau, Lhasa 850007, China

3. College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Weeds have a significant impact on the growth of rice. Accurate information about weed infestations can provide farmers with important information to facilitate the precise use of chemicals. In this study, we utilized visible light images captured by UAVs to extract information about weeds in areas of two densities on farmland. First, the UAV images were segmented using an optimal segmentation scale, and the spectral, texture, index, and geometric features of each segmented object were extracted. Cross-validation and recursive feature elimination techniques were combined to reduce the dimensionality of all features to obtain a better feature set. Finally, we analyzed the extraction effect of different feature dimensions based on the random forest (RF) algorithm to determine the best feature dimensions, and then we further analyzed the classification result of machine learning algorithms, such as random forest, support vector machine (SVM), decision tree (DT), and K-nearest neighbors (KNN) and compared them based on the best feature dimensions. Using the extraction results of the best classifier, we created a zoning map of the weed infestations in the study area. The results indicated that the best feature subset achieved the highest accuracy, with respective overall accuracies of 95.38% and 91.33% for areas with dense and sparse weed densities, respectively, and F1-scores of 94.20% and 90.57. Random forest provided the best extraction results for each machine learning algorithm in the two experimental areas. When compared to the other algorithms, it improved the overall accuracy by 1.74–12.14% and 7.51–11.56% for areas with dense and sparse weed densities, respectively. The F1-score improved by 1.89–17.40% and 7.85–10.80%. Therefore, the combination of object-based image analysis (OBIA) and random forest based on UAV remote sensing accurately extracted information about weeds in areas with different weed densities for farmland, providing effective information support for weed management.

Funder

Science and Technology Department of Tibet Key Project

Sichuan Education Department Natural Science Key Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3