Affiliation:
1. Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Center for Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China
2. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China
Abstract
With the influence of climate change and human activities, the frequency and scale of forest fires have been increasing continuously, posing a significant threat to the environment and human safety. Therefore, rapid and accurate forest fire detection has become essential for effective control of forest fires. This study proposes a Forest Fire Detection and Segmentation Model (FFDSM) based on unmanned aerial vehicle (UAV) infrared images to address the problems of forest fire occlusion and the poor adaptability of traditional forest fire detection methods. The FFDSM integrates the YOLO (You Only Look Once) v5s-seg, Efficient Channel Attention (ECA), and Spatial Pyramid Pooling Fast Cross-Stage Partial Channel (SPPFCSPC) to improve the detection accuracy of forest fires of different sizes. The FFDSM enhances the detection and extraction capabilities of forest fire features, enabling the accurate segmentation of forest fires of different sizes and shapes. Furthermore, we conducted ablation and controlled experiments on different attention mechanisms, spatial pyramid pooling (SPP) modules, and fire sizes to verify the effectiveness of the added modules and the adaptability of the FFDSM model. The results of the ablation experiment show that, compared to the original YOLOv5s-seg model, the models fused with the ECA and SPPFCSPC achieve an improved accuracy, with FFDSM showing the greatest improvement. FFDSM achieves a 2.1% increase in precision, a 2.7% increase in recall, a 2.3% increase in mAP@0.5, and a 4.2% increase in mAP@0.5:0.95. The results of the controlled experiments on different attention mechanisms and SPP modules demonstrate that the ECA+SPPFCSPC model (FFDSM) performs the best, with a precision, recall, mAP@0.5, and mAP@0.5:0.95 reaching 0.959, 0.870, 0.907, and 0.711, respectively. The results of the controlled experiment on different fire sizes show that FFDSM outperforms YOLOv5s-seg for all three fire sizes, and it performs the best for small fires, with a precision, recall, mAP@0.5, and mAP@0.5:0.95 reaching 0.989, 0.938, 0.964, and 0.769, respectively, indicating its good adaptability for early forest fire detection. The results indicate that the forest fire detection model based on UAV infrared images (FFDSM) proposed in this study exhibits a high detection accuracy. It is proficient in identifying obscured fires in optical images and demonstrates good adaptability in various fire scenarios. The model effectively enables real-time detection and provides early warning of forest fires, providing valuable support for forest fire prevention and scientific decision making.
Funder
Guangdong Forestry Science and Technology Innovation Project
Subject
General Earth and Planetary Sciences
Reference57 articles.
1. Fire-induced loss of the world’s most biodiverse forests in Latin America;Armenteras;Sci. Adv.,2021
2. A review of global forest fires in 2021;Bal;Fire Sci. Technol.,2022
3. Global and regional trends and drivers of fire under climate change;Jones;Rev. Geophys.,2022
4. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and monitoring for reducing false alarms in forest-fires;Sudhakar;Comput. Commun.,2020
5. An improved algorithm for small and low-intensity fire detection in the temperate deciduous forests using MODIS data: A preliminary study in the Caspian Forests of Northern Iran;Pourshakouri;Nat. Hazards,2023
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献