An Improved YOLOv5s-Seg Detection and Segmentation Model for the Accurate Identification of Forest Fires Based on UAV Infrared Image

Author:

Niu Kunlong12,Wang Chongyang1ORCID,Xu Jianhui1,Yang Chuanxun1,Zhou Xia1,Yang Xiankun2ORCID

Affiliation:

1. Key Lab of Guangdong for Utilization of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangdong Engineering Technology Center for Remote Sensing Big Data Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China

2. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

Abstract

With the influence of climate change and human activities, the frequency and scale of forest fires have been increasing continuously, posing a significant threat to the environment and human safety. Therefore, rapid and accurate forest fire detection has become essential for effective control of forest fires. This study proposes a Forest Fire Detection and Segmentation Model (FFDSM) based on unmanned aerial vehicle (UAV) infrared images to address the problems of forest fire occlusion and the poor adaptability of traditional forest fire detection methods. The FFDSM integrates the YOLO (You Only Look Once) v5s-seg, Efficient Channel Attention (ECA), and Spatial Pyramid Pooling Fast Cross-Stage Partial Channel (SPPFCSPC) to improve the detection accuracy of forest fires of different sizes. The FFDSM enhances the detection and extraction capabilities of forest fire features, enabling the accurate segmentation of forest fires of different sizes and shapes. Furthermore, we conducted ablation and controlled experiments on different attention mechanisms, spatial pyramid pooling (SPP) modules, and fire sizes to verify the effectiveness of the added modules and the adaptability of the FFDSM model. The results of the ablation experiment show that, compared to the original YOLOv5s-seg model, the models fused with the ECA and SPPFCSPC achieve an improved accuracy, with FFDSM showing the greatest improvement. FFDSM achieves a 2.1% increase in precision, a 2.7% increase in recall, a 2.3% increase in mAP@0.5, and a 4.2% increase in mAP@0.5:0.95. The results of the controlled experiments on different attention mechanisms and SPP modules demonstrate that the ECA+SPPFCSPC model (FFDSM) performs the best, with a precision, recall, mAP@0.5, and mAP@0.5:0.95 reaching 0.959, 0.870, 0.907, and 0.711, respectively. The results of the controlled experiment on different fire sizes show that FFDSM outperforms YOLOv5s-seg for all three fire sizes, and it performs the best for small fires, with a precision, recall, mAP@0.5, and mAP@0.5:0.95 reaching 0.989, 0.938, 0.964, and 0.769, respectively, indicating its good adaptability for early forest fire detection. The results indicate that the forest fire detection model based on UAV infrared images (FFDSM) proposed in this study exhibits a high detection accuracy. It is proficient in identifying obscured fires in optical images and demonstrates good adaptability in various fire scenarios. The model effectively enables real-time detection and provides early warning of forest fires, providing valuable support for forest fire prevention and scientific decision making.

Funder

Guangdong Forestry Science and Technology Innovation Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. Fire-induced loss of the world’s most biodiverse forests in Latin America;Armenteras;Sci. Adv.,2021

2. A review of global forest fires in 2021;Bal;Fire Sci. Technol.,2022

3. Global and regional trends and drivers of fire under climate change;Jones;Rev. Geophys.,2022

4. Unmanned Aerial Vehicle (UAV) based Forest Fire Detection and monitoring for reducing false alarms in forest-fires;Sudhakar;Comput. Commun.,2020

5. An improved algorithm for small and low-intensity fire detection in the temperate deciduous forests using MODIS data: A preliminary study in the Caspian Forests of Northern Iran;Pourshakouri;Nat. Hazards,2023

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3