Impact of Aggregate Grain Size on ASR-Induced Expansion

Author:

Zapała-Sławeta Justyna1ORCID

Affiliation:

1. Faculty of Civil Engineering and Architecture, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

Abstract

Alkali–silica reaction (ASR) is a sequence of complex chemical processes, resulting in the formation of alkali silica gels with high swelling ability. ASR leads to the expansion of concrete and the degradation of its microstructure. The susceptibility of aggregates to alkali reaction depends, among other factors, on the type and origin of the aggregate, the presence of reactive forms of silica, the mineral composition, and the geometric properties of the aggregate, such as shape and grain size. This study aimed to investigate the impact of the grain size of polymineral post-glacial gravel aggregate, originating from the northern regions of Poland, on its susceptibility to ASR. The expansion of mortars made from polymineral aggregate and the cracking of grains and cement matrix due to the occurring reactions were analyzed. Based on the conducted research, it was observed that the expansion of mortars depends on the grain size of the aggregate. It was demonstrated that the fraction of reactive aggregate generating the most significant elongation of mortars is in the range of 1.0–2.0 mm. The reaction of silica with alkalis continued until the depletion of reactive components in the aggregate. The relationship between the progress of corrosive processes and the grain size of the aggregate was evident in the form of different linear elongation increments of mortars over time. The expansion of mortars was caused by the swelling ASR gel, inducing stress in the grain and the surrounding cementitious paste.

Funder

Kielce University of Technology

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. (2010). Aggregates for Concsrete (Standard No. PN-EN 12620+A1).

2. Expansion of concrete through reaction between cement and aggregate;Stanton;Proc. Am. Soc. Civ. Eng.,1940

3. The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction;Shehata;Cem. Concr. Res.,2000

4. New approach in inhibiting alkali-aggregate expansion;McCoy;ACI Mater. J.,1951

5. Efficiency of ternary blends containing fine glass powder in mitigating alkali–silica reaction;Afshinnia;Constr. Build. Mater.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3