Fermat Principle, Ramsey Theory and Metamaterials

Author:

Frenkel Mark1ORCID,Shoval Shraga2ORCID,Bormashenko Edward1ORCID

Affiliation:

1. Chemical Engineering Department, Engineering Faculty, Ariel University, Ariel 407000, Israel

2. Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, Ariel 407000, Israel

Abstract

Reinterpretation of the Fermat principle governing the propagation of light in media within the Ramsey theory is suggested. Complete bi-colored graphs corresponding to light propagation in media are considered. The vertices of the graphs correspond to the points in real physical space in which the light sources or sensors are placed. Red links in the graphs correspond to the actual optical paths, emerging from the Fermat principle. A variety of optical events, such as refraction and reflection, may be involved in light propagation. Green links, in turn, denote the trial/virtual optical paths, which actually do not occur. The Ramsey theorem states that within the graph containing six points, inevitably, the actual or virtual optical cycle will be present. The implementation of the Ramsey theorem with regard to light propagation in metamaterials is discussed. The Fermat principle states that in metamaterials, a light ray, in going from point S to point P, must traverse an optical path length L that is stationary with respect to variations of this path. Thus, bi-colored graphs consisting of links corresponding to maxima or minima of the optical paths become possible. The graphs, comprising six vertices, will inevitably demonstrate optical cycles consisting of the mono-colored links corresponding to the maxima or minima of the optical path. The notion of the “inverse graph” is introduced and discussed. The total number of triangles in the “direct” (source) and “inverse” Ramsey optical graphs is the same. The applications of “Ramsey optics” are discussed, and an optical interpretation of the infinite Ramsey theorem is suggested.

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. Hecht, E. (2002). Optics, Addison-Wesley. [4th ed.].

2. Ceccarelli, M. (2007). Distinguished Figures in Mechanism and Machine Science: Their Contributions and Legacies, Springer.

3. Adamson, P. (2016). Philosophy in the Islamic World: A History of Philosophy without Any Gaps, Oxford University Press.

4. Born, M., and Wolf, E. (1999). Principles of Optics, Cambridge University Press.

5. Some remarks regarding electrodynamics of materials with negative refraction;Veselago;Appl. Phys. B,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3