The Effects of the Al and Zr Contents on the Microstructure Evolution of Light-Weight AlxNbTiVZry High Entropy Alloy

Author:

Yan Hongwei123,Liu Rui123,Li Shenglong123,Zhang Yong’an123,Xiao Wei123ORCID,Xue Boyu123,Xiong Baiqing123,Li Xiwu123,Li Zhihui123

Affiliation:

1. State Key Laboratory of Nonferrous Metals and Processes, China GRINM Group Co., Ltd., Beijing 100088, China

2. GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China

3. General Research Institute for Nonferrous Metals, Beijing 100088, China

Abstract

To investigate the comprehensive effects of the Al and Zr element contents on the microstructure evolution of the AlNbTiVZr series light-weight refractory high entropy alloys (HEAs), five samples were studied. Samples with different compositions were designated Al1.5NbTiVZr, Al1.5NbTiVZr0.5, AlNbTiVZr, AlNbTiVZr0.5, and Al0.5NbTiVZr0.5. The results demonstrated that the actual density of the studied HEA samples ranged from 5.291 to 5.826 g·cm−3. The microstructure of these HEAs contains a solid solution phase with a BCC structure and a Laves phase. The Laves phase was further identified as the ZrAlV intermetallic compound by TEM observations. The microstructure of the AlNbTiVZr series HEAs was affected by both the Al and Zr element contents, whereas the Zr element showed a more dominant effect due to Zr atoms occupying the core position of the ZrAlV Laves phase (C14 structure). Therefore, the as-cast Al0.5NbTiVZr0.5 sample exhibits the best room temperature compression property with a compression strength (σp) of 1783 MPa and an engineering strain of 28.8% due to having the lowest ZrAlV intermetallic compound area fraction (0.7%), as characterized by the EBSD technique.

Funder

Science and Technology Innovation Fund Project of GRIMAT Engineering Institute Co., Ltd., China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3