Deep Reinforcement Learning for Joint Trajectory Planning, Transmission Scheduling, and Access Control in UAV-Assisted Wireless Sensor Networks

Author:

Luo Xiaoling12,Chen Che34,Zeng Chunnian1,Li Chengtao2,Xu Jing5,Gong Shimin4ORCID

Affiliation:

1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

2. China Three Gorges Corporation, Wuhan 430010, China

3. School of Computer Sciences, Minnan Normal University, Zhangzhou 363000, China

4. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518107, China

5. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Unmanned aerial vehicles (UAVs) can be used to relay sensing information and computational workloads from ground users (GUs) to a remote base station (RBS) for further processing. In this paper, we employ multiple UAVs to assist with the collection of sensing information in a terrestrial wireless sensor network. All of the information collected by the UAVs can be forwarded to the RBS. We aim to improve the energy efficiency for sensing-data collection and transmission by optimizing UAV trajectory, scheduling, and access-control strategies. Considering a time-slotted frame structure, UAV flight, sensing, and information-forwarding sub-slots are confined to each time slot. This motivates the trade-off study between UAV access-control and trajectory planning. More sensing data in one time slot will take up more UAV buffer space and require a longer transmission time for information forwarding. We solve this problem by a multi-agent deep reinforcement learning approach that takes into consideration a dynamic network environment with uncertain information about the GU spatial distribution and traffic demands. We further devise a hierarchical learning framework with reduced action and state spaces to improve the learning efficiency by exploiting the distributed structure of the UAV-assisted wireless sensor network. Simulation results show that UAV trajectory planning with access control can significantly improve UAV energy efficiency. The hierarchical learning method is more stable in learning and can also achieve higher sensing performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3