A Double-Layer Blockchain Based Trust Management Model for Secure Internet of Vehicles

Author:

Ruan Wenbo12ORCID,Liu Jia12ORCID,Chen Yuanfang12ORCID,Islam Sardar M. N.3,Alam Muhammad4

Affiliation:

1. School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou 310018, China

2. Key Laboratory of Discrete Industrial Internet of Things of Zhejiang Province, Hangzhou 310018, China

3. Institute for Sustainable Industries and Liveable Cities (ISILC), Victoria University, Melbourne, VIC 3030, Australia

4. School of Engineering, London South Bank University, London SE1 0AA, UK

Abstract

The Internet of Vehicles (IoV) enables vehicles to share data that help vehicles perceive the surrounding environment. However, vehicles can spread false information to other IoV nodes; this incorrect information misleads vehicles and causes confusion in traffic, therefore, a vehicular trust model is needed to check the trustworthiness of the message. To eliminate the spread of false information and detect malicious nodes, we propose a double-layer blockchain trust management (DLBTM) mechanism to objectively and accurately evaluate the trustworthiness of vehicle messages. The double-layer blockchain consists of the vehicle blockchain and the RSU blockchain. We also quantify the evaluation behavior of vehicles to show the trust value of the vehicle’s historical behavior. Our DLBTM uses logistic regression to accurately compute the trust value of vehicles, and then predict the probability of vehicles providing satisfactory service to other nodes in the next stage. The simulation results show that our DLBTM can effectively identify malicious nodes, and over time, the system can recognize at least 90% of malicious nodes.

Funder

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3