Affiliation:
1. Computer and Communication Engineering, Manipal University Jaipur, Jaipur 303007, Rajasthan, India
2. Department of Computer Science, Norwegian University of Science and Technology, 7034 Trondheim, Norway
Abstract
An increasing number of patients and a lack of awareness about obstructive sleep apnea is a point of concern for the healthcare industry. Polysomnography is recommended by health experts to detect obstructive sleep apnea. The patient is paired up with devices that track patterns and activities during their sleep. Polysomnography, being a complex and expensive process, cannot be adopted by the majority of patients. Therefore, an alternative is required. The researchers devised various machine learning algorithms using single lead signals such as electrocardiogram, oxygen saturation, etc., for the detection of obstructive sleep apnea. These methods have low accuracy, less reliability, and high computation time. Thus, the authors introduced two different paradigms for the detection of obstructive sleep apnea. The first is MobileNet V1, and the other is the convergence of MobileNet V1 with two separate recurrent neural networks, Long-Short Term Memory and Gated Recurrent Unit. They evaluate the efficacy of their proposed method using authentic medical cases from the PhysioNet Apnea-Electrocardiogram database. The model MobileNet V1 achieves an accuracy of 89.5%, a convergence of MobileNet V1 with LSTM achieves an accuracy of 90%, and a convergence of MobileNet V1 with GRU achieves an accuracy of 90.29%. The obtained results prove the supremacy of the proposed approach in comparison to the state-of-the-art methods. To showcase the implementation of devised methods in a real-life scenario, the authors design a wearable device that monitors ECG signals and classifies them into apnea and normal. The device employs a security mechanism to transmit the ECG signals securely over the cloud with the consent of patients.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference48 articles.
1. Sleep apnea detection from single-lead ECG: A comprehensive analysis of machine learning and deep learning algorithms;Bahrami;IEEE Trans. Instrum. Meas.,2022
2. Sleep Disorders;Pavlova;Am. J. Med.,2019
3. Deep learning forecasts the occurrence of sleep apnea from single-lead ECG;Bahrami;Cardiovasc. Eng. Technol.,2022
4. Sleep disorders and aging;Prinz;N. Engl. J. Med.,1990
5. Mcclure, K., Erdreich, B., Bates, J.H.T., Mcginnis, R.S., Masquelin, A., and Wshah, S. (2020). Classification and detection of breathing patterns with wearable sensors and deep learning. Sensors, 20.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献